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ON THE TRANSITION MODE CHARACTERIZING THE TRIGGERING OF A VIBRATOR 
IN THE SUBSONIC BOUNDARY LAYER ON A PLATE* 

O.S. RYZHOV and E.D. TERENT'EV 

The problem of the development of two-dimensional linear perturbations 
in a boundary layer, generated by the triggering of a vibrator, is 
considered. Fourier transformations in the longitudinal coordinate and 
a Laplace transform in time are used to construct the solution. The 
inverse transforms are evaluated for large values of the characteristic 
time t and all values of the longitudinal coordinate Z. Domains located 
downstream of the vibrator are studied inthe first of which the 
perturbations will have the form of Tollmien-Schlichting waves that go 
over into a wave packet in the second domain. The identity in the 
structure of the wave packets, which are orthonormalized to the maximum 
amplitude for this packet for different frequencies of vibrator oscil- 
lation is noted. 

Vibrating tapes located either on a streamlined surface or within the stream are often 
used in experimental installations for investigating boundary layer stability. Measurements 
are made when the harmonic mode of vibrator operation is built up, the transient that 
originates when it is triggered is considered to be of slight interest and for this reason 
is not considered. If the frequency of the forced oscillations exceeds the critical value, 
the formulation of the appropriate boundary value problem is fraught with serious difficulties 
since the solution must be sought in a class of functions with exponential growth in the 
longitudinal coordinate. Conditions which ensure the uniqueness of the solution are spoiled 
since an exponentially increasing eigenfunction of the homogeneous boundary value problem can 
be appended with arbitrary weight to any solution. The emergence from the situation created 
relies on the postulate proposed in /l/ according to which the solution at each fixed time 
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and at each given point of space should be a continuous function of the parameters, including 
the frequency of the forced harmonic perturbations. This postulate ensures uniqueness in the 
selection of the weighting factor before the eigenfunction. 

To provide a foundation or to disprove the postulate being discussed, a solution should 
be constructed for the more general problem with initial data on the triggeringofthevibrator, 
switched in at a certain time. Such a problem was examined in /2/, where the main attention 
was concentrated on calculating the pressure for times which increased without limit and for 
large, but finite, distances along the length of the plate downstream of the source of 
oscillation. It is shown that for the times and distances under consideration, the perturba- 
tions behind the vibrator take the form of monochromatic Tollmien-Schlichting waves with 
frequency equal to the frequency of the source in conformity with the postulate put forward 
in /I/. 

The flow is studied below in the intermediate domain where connection of the unperturbed 
boundary layer ahead of it occurs with the Tollmien-Schlichting wave behind it. This domain 
is occupied by a vortex spot (wave packet) characterizing the triggering of the vibrator. 
The tongue of the vortex spot moving most rapidly ahead carries information in its structure 
about the initial stage of the motion of the vibrator brought out from rest, but the amplitude 
of the gas oscillations is small in this part. The centre of the spot contains pulsations 
with the highest amplitude , where their nature is determined by the internal properties of the 
boundary layer with selfinduced pressure. In the real part of the spot, the span of the 
oscillations again diminishes, here the perturbation field depends on the frequency of the 
forcing force but this dependence is manifested weakly at subcritical frequencies. A vibrator 
operating at subcritical frequency in experimental installations can be used to generate 
laminar vortex spots. 

1, Formulation of the problem. Let a uniform subsonic ideal gas stream impinge on 
a plate with a vibrator on its surface. We select the frequency, longitudinal dimension, and 
amplitude of the source oscillations such that the motion it excites could be described by 
the theory of free boundary layer interaction /3-5/. Expressing both the independent variable 
and the desired functions in units of the special dimensionless system of this theory, we 
allow the intensity of the perturbations to tend to zero. In the system mentioned t is the 
time, 5 and y are Cartesian space coordinates, and u' and v' are the vector components of the 
velocity pulsations found from the solution of the linearized Prandtl equations 

for an incompressible fluid , where the excess pressurep', unknown in advance, will satisfy 
the additional limit condition 

We assume that the vibrator is triggered at a time t = 0, therefore, for t<O the 
stream impinges on a smooth plate Yla = 0. when t> 0 we consider the moving part of the 
streamlined surface (membrane) of triangular shape and oscillating sinusoidally; hence 

Y, = f (3) sin o,t 

0, x<O or x>a 

f(x) = 2x, O,<x<b 
Zb(u--)/(a-b), b6rga 

(1.3) 

0.4) 

The frequency oO and the parameters a and t, are positive. 
Since the initial Blasius boundary layer is unperturbed, the initial condition asserts 

u'=O, t=O (1.5) 

The conditions for gas adhesiontothe vibrating membrane are 

u‘ = - ~(~)sin~~t, ~~=~~~(~~co~~~t, y=o, t>o WI 

2. Application of integral transforms. Let us expand the solution of problems 
(l.l)-(1.6) in Laplace integrals in time and Fourier integrals in the longitudinal coordinate 
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Substituting them into the Linearized Prandtl equations, we obtain a system of ordinary 
differential equations for the function-transforms ii, c and ji. Integration of this system 
is by means of the scheme developed in /6-9/ and relies on the introduction of the complex 
independent variable 

z = Q + i'l&?l*y, Q = i-V*&+* (2.1) 

As ever, the main difficulty is in constructing the originals by using the inverse 
transforms. Of all the transforms under consideration, p has the simplest expression because 
it is independent of the transverse coordinate 9. Let Ai denote the Airey function and let 
us set 

ZJ (Q, k) = 0 (a) -Q (W (2.2) 

Taking into account that 

-iak 

is the Fourier transform of the function f given by (1.4), we have /6-9/ 

B = -00 t k !fF (k) @ (Q)[(o” + w,‘) F (Q, k)J-’ (2.3) 

Let us clarify how the pressure changes along the boundary layer. Calculation of the 
perturbed velocity vector components, although more complex in technical respects, does not 
encounter any new problems, in principle, during the solution. 

Inversion of the formula for f, requires a knowledge of the structure of both the 
complex planes o and k. If we start with the calculation of the inverse Laplace transform, 
then k will play the part of a real (negative or positive) parameter. Under the condition, 
there are no other singularities in the o plane besides the denumerable set of poles of the 
function-transform. The second plane in which the subsequent examination of the inverse 
Fourier transform will proceed, appears much more complicated. Indeed, the passage over to 
the variable z by using relationship (2.1) and the extraction of a single-valued branch for 
the function k’i* requires, firstly, drawing a slit along the positive imaginary half-axis 
from the origin to infinity. Furthermore, the quantity F(8, k) in the denominator of (2.3) 
for jj constrains the non-analytic function Ikl. On being equated to zero it yields the dis- 
persion relation /6-9/ 

Q,(Q) = Q (4 (2.4) 

that connects the frequency to the free-oscillation wave number. Finally, a denumerable 
number of branch points is located in the complex k plane, and their appearance is due to the 
possibility of interaction of the dispersion curves and they must be taken into account in 
the inverse Fourier transform during deformation of the path of integration. However, it is 
essential that none of the branch points under consideration be incident on the real axis. 

Let Q,(k) be the m-th root of Eq.(2.4) and o,,,(k) its corresponding dispersion curve, 
where m = 1, 2, . . . . From the definition (2.2) of the functions F and 0 the following 
differential connection results 

d Ai IQ,,, WI dQ, W,,, WI 
dP dQ =o,[Q,(k)] a=[~2(k)‘k1 (2.5) 

H = F (Q, k) Z (‘2) = dAi (61)ldz - i’l*k’ls 1 k ) Z (52) (2.6) 

For real k the real part of al(k) can take on both negative and positive values. All 
the remaining dispersion curves o,(k) lie entirely in the left o half-plane. The equality 
Re q (k) = 0 fixes the critical frequency o* = 2.298 and the wave number k, = 1.0005, that 
characterize the neutral oscillations. 

Making use of the fact that for real k all singularities of p in the w plane reduce 
to a denumerable set of poles, we expand the inverse Laplace transform in a series in the 
residues of the integrand. For t>i there will be two main terms of the series, and the 
application of the Laplace lemma to the sum of the remaining terms will result in an estimate 

00-7 uniformly in 5 /2/. Further analysis is based on neglecting the sum mentioned. 
The simplification performed enables us to write the inverse Fourier transform as /2, 9/ 

P’ = f Re [Ia (4 exp (&&) + Z, (t, z)] (2.7) 



756 

{[d(k) +-~3]~~[%(k), k]WW’dk 

if we set Q, = I'f~o,h+* and return to the differential connection (2.5) in combination with 
the definition (2.6) of the function X. 

The first component in 12.7) for p’ yields the fluctuation of the excess pressure near 
the vibrator, which, according to /a/, damp out as O(@) for all frequencies except the 
critical one. Since the fundamental aim is clarification of the perturbation mode in the 
limit when not only t>i but also s>i, this component can generally be omitted because 
of smallness, but to keep the picture complete, the correction it specified was taken into 
account in constructing some of the graphs presented below that refer to moderate times and 
distances from the source. 

3, The complex B and k planes. For the subcritical frequencies wO<o, the 
integral le yields a contribution O(P) to the pressure fluctuations in the domain z< V,t, 
where V, is a constant. For vibrator operation at the post-critical frequencies oO>o* the 
same integral describes a Tollmien-Schlichting wave with exponentially increasing amplitude 
of the oscillations in the domain mentioned. The results that were obtained in /2/ are the 
foundation for the postulate put forward in /l/ that governs the structure of the perturbations 
as the frequency of the harmonic oscillator passes through the critical value. 

We evaluate the constant V, and study what occurs in the domain x> v,(t) for both the 
sub- and the post-critical frequencies. After (2.6) has been differentiated the integral 1, 
takes the form 

I,=- C/to)0 5 x (k; 00) exp (tcp (k; V)) dk 

x = l&fp (k) dAi El, (k;lldQ fIwlZ (k) + ~$1 [co1 (k) -!- ik’l Ai 1% (kfl)-’ 

g, (k; V) = co1 (k) f iVk; V = x/t 

(3.1) 

(3.2) 

The asymptotic expansion of or as 1 k I-+= and -s/8< arg k< n/2 states 

o1 = - ik8 + v/2 (1 - i)/2 + . . . (3.3) 

from which for real positive k to a first approximation Rev = $5/2. In this connection, 
integration along the real axis in the first of the formulas in (3.11 is difficult since the 
convergence of 19 is achieved just because of the function x which decreases as 1 k Iv3 as 
Ik I-+~. For large values of Ik I the path of integration should be deformed in such a way 
that it would go into the fourth quadrant of the plane k, for examples parallel to, but 
below the real axis. The deformation mentioned ensures that the integrand in 1% tends to 
zero exponentially, whereupon in this case the principal term Re rp = 2 Rek-Im k andImk<O. 
It is understood that by deforming the initial path of integration, the poles and branch 
points of the integrand, which are incident in the domain bounded by the new contour, must 
be taken into account. 

i Imk 
t 11 

Fig.1 Fig.2 

The location of the first singularity, the simple pole 0, (k)= -_icna, depends onthevibrator 
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frequency oO,its trajectory k. is shown in Fig.1, where o0 grows along the curve as one moves 
away from the origin. For 00 = 0, it intersects the real axis ay the point k=k,. When 
00 - 03 the shape ofthetrajectory is built up by using the asymptotic expansion (3.3) for ol. 

The existence of other zeros of the denominator of the function x from the integrand in 

1, is due to the disappearance of the product Ai[Q, (k)][o,(k)+ik’]. The roots of the equation 
obtained in this manner are double roots of the dispersion relation (2.4). In the complex Q 
plane they are displayed by the common points P, of its simple roots Q,(k) and P,(k). Indeed, 
let 0 and d@ldQ remain bounded as P+P,; then together with the dispersion relation 
itself the double roots should satisfy the additional equality 

d’DldS-2 = Ai (S-2) [Q + Cp (P)] I-1 (61) = 0 (3.4) 

from which the assertion formulated above results. It follows from (3.4) that under the 
assumption made the points P, are generated by zeros of one of the functions AI(P) or 

rp = Q + Q (Q). As is well-known, the zeros Pj(') of the Airey functions lie on the real negative 

semi-axis (they are denoted by open circles in Fig.2). All the pairs of complex-conjugate 
zeros Oj(-) and pj(+) of the function + are in thelefthalf-plane and denoted by the dark 
points. 

We will examine the nature of the singularities that occur when the integral I passes 
through zero from the denominator of the expressions for both the function 0 and its derivative 
dcDb-2. The corresponding points P&) and P$) are complex-conjugates and are also in the left 

half-plane (they are denoted by crosses in Fig.2). The expansion 

is valid in their neighbourhood. 
Since k-‘l. is a single-valued function int the plane with the slit along the imaginary 

positive half-axis from the origin to infinity, the zeros of the integral I do not yield new 
branch points for the roots of the dispersion relation. In all the cases to be discussed 
below, j runs through the values 1,2,.... 

The points under consideration in the hl plane generate singular points k,,,,, in the k 
plane, out of which k, = k,@’ = 0.590 - 0.2441 and k,, = k, (-) = 3.444-0.207i must be taken into account 
in I, during deformation of the path of integration. These are determined by the equalities 
Ai[Q,(k)l-0 and q(k)+fk*=O, i.e. are points where the first root C&(k) of the dispersion 
relation takes equal values with the second Q,(k) and third P,(k) roots. It hence follows 
that the singular points k,, and k,, are not only zeros of the denominator of x but also 
branch points of the function q(k) from the integrand in I,. 

4. Selection of the contour of integration. Taking account of the remarks made, 
we deform the path of integration in Ia along the real positive half-axis into a new contour, 
denoted by L in Fig.1, in such a way as to remain at the side of the point klr. The deformed 
contour encirles the singular point k,*, approaches and leaves it along the edges of the slit 
drawn from this point. For Rek> 3.8, a line located below the trajectory k, parallel to 
the real axis is L. The spacing between L and the real axis will be selected later. When 
1 k I+m the advantages of integrating along L are obvious. The desirability of going over 
to the new contour for small and moderate values of Ik 1 requires discussion. The solution of 
this question depends on what are the values of the time t and the constant V in (3.2) for 
the exponent tcp. In laboratory experiments, growth of the vortex spot amplitude is replaced 
by a non-linear development process at small distances from the source at the end of a finite 
interval t after the triggering /lo/. In order to be able to compare the theoretical results 
with test data it is not enough to examine just the limit case t>l. 

We rewrite the integral II as follows 

la = i+ coo {S x (k; 4 exp (tcp (k; V) dk - 

where 0 is the Heaviside unit function. For oO>o+ the second term on the right hand side 
of (4.1) is a Tollmien-Schlichting wave. As calculations showed, the firt term tends to zero 
for Vg 2.4 if ~-B-W. It therefore follows that the constant V, = 2.4 and the use of L 
as the path of integration is justified in the range of V mentioned. Constraining the time 
interval by the inequalities 3 <t<lO, the range of apllication of L can be extended to 
V< 3.5. However, as V increases to 4.0 the integrand in the second term on the right-hand 
side of (4.1) rapidly becomes oscillatory, which requires the introduction of a very shallow 
step of integration. The integral itself increases radically: for t= 10 it is of the order 
of l(r. Despitetherapid convergence of this integral as IkI-+m, it becomes difficult to 
ensure high accuracy of the calculations if V> 3.5. It is clear that further deformation 
of L into a new or even a system of contours is necessary. 
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Their search relies on the idea underlying the saddle-point method. However, for 
comparitively small times 3gt<iO the saddle-point method in its classical formulation 
yields a substantial error in evaluating the first term on the right side of (4.1). For any 

fixed V the coordinates of the saddle point satisfy the equation 

d(plak = dyhk + 1V = 0 (4.3) 

whose solution is denoted by k,= kS(v). As calculatione carried out on a computer showed, 

the function k.(V) has two branches tl(V) and kSp(V),, shown in Fig.1. The former is 

associated with the singular point k,, and the expansion 

$2, - 0~) = + i”k;l,’ [dtQ, (Qm)/dQ*]-? (k - kU) + . . . 

d% (Q,,)/dQ’ = -Q,,Ai (Q,,) [dAi (Q,,)/dQ]-l, PIa = -i”*kk,,(‘* 

is valid in its neighbourhood, while the latter enables us to find the derivative 

dqldk = ‘i,i”Sk-k-%Ql (k) + ftnk%dQ,/dk 

from (4.2) as k -t kla. The curve k,(V) starts from the infinitely remote point of the k 

plane for V= 0, which corresponds to the point 91i)=-4.107--21.144 in the h2 plane. It 
then intersects the contour L, envelops the point k,s from above and is based on it in the 

limit as V-t-. The second branch k,,(V) starts from the infinitely remote point of the k 

plane for v = 0, which corresponds to Qf;)= -6.798 - i 1.035, emerges on the first sheet of the 
Riemann surface from under the slit drawn through kls, intersects the real axis and departs 

along the real axis for the infinitely remote point of the k plane corresponding to the 

infinitely remote point of the 61 plane as V-m. Trajectories of the saddle points generated 

by the branches kal(V) and &s(v) 

'J = %I (v) = 0, (k,l 0')) [i&l (VII-'l' 

p = %P (v) = 01 (k.q (v)) 1% (v)I"' 

in the Q plane are presented in Fi.g.2. 

The nature of the change in Recp (k,,,V) and Recp (km,V) along the curves k,,(V) and k,(V) 
can be elucidated from Fig.3, where they are marked with the numbers 1 and 2, respectively. 

We skip through every point of the curve t(v) 

RClO with a fixed value V to the line k,, carrying the 
constant value 

Im cp (k; v) = Im ‘p (k,, (v); VI 

On this line we note those points where Re q(k,,; 

V)= 0 by dark circles. As V changes these points 

move forming two branches, one of which is located 

almost entirely in the upper k half-plane, while 

Fig.3 
the other passes near the edges of the slit drawn 

through k,, . Two circumstances play a substantial 

role: the first branch intersects the contour L for Vz 3.2, and bending of the second branch 

is accompanied by its displacement under the slit for Vz7.4. 

We return to the domain D in Fig.1, which is bounded from above by the contour U and 

from below by the contour L. The former is selected so that for 3.2< V(7.4 both branches 

of the curve formed by the dark points do not leave D. we connect points of the contours U 

and L by a system of lines 4. In conformity with Fig.3, Re q~(l+, V)>Oon a segment of each 

such line cut off by the twobranches of the curveof dark points, where the maximum is reached 

at the saddle point. 
The range in which the second term from the right side of (4.1) is obtained by an 

integration path along L can be constructed now to 06 Vd3.2 if the comparatively small 

times 3<t<lO are considered. For each V from the interval 3.2< V< 7.4 its contour 

of integration consisting of three parts should be chosen. The section of U from the origin 

to the point of intersection with the line 41 carrying prescribed values of V and Imcp (k; 

V) forms the first; the second part agrees with the segment kvl from D; and the section 

of L from the point of intersection with the line k,l to infinity yields the third. Along 

the first and third parts of the new contour Rer~ (k; V)V)Q 0, which ensures smallness of the 

contributions due to these parts in I,. Along the second part Im q (k; V) = coast, the rapidly 

oscillating term exp [itImcp(k; V)l is taken outside the integral sign while the rest of the 

integrand varies smoothly. Consequently, a comparativelycoarse spacing can be used for 

integration along k,l . AI-I analogous contour deformation is the crux of the saddle-point 

method, but the integral desired in it is evaluated over a small section in the immediate 

vicinity of the saddle point under the assumption that t-too. The fuller analysis elucidated 

above about how the contour of integration should be transformed for the computation of 1% 

by means of (4.1), enables us to consider the moderate values 3 < t < IO. 
To evaluate the magnitude of I, by means of (4.1) for 7.4< V( DO it would be natural 
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to construct a system of lines &s which would pass through points of the curve k,, with 
fixed V and carry the constant values 

Im cp (k; V) = Im cp Ikaa (V); VI 

However, it is impossible to realize this program completely because a line Sz that connects 
both geometric sites kSl and kea of the saddle Doints exists for a certain V from the 
interval 7.93( V< 7.95 It is determined by V from the equation 

Im cp [k,, (V), VI = Im cp [Its* (V); VI 

and is a separatrix: the lines kT2 located below it depart to the second sheet of the Riemann 
surface under the slit drawn through kxa, and only lines km1 lying above it connect the 
contour U to the contour L, forming a new path of integration. The topology of the curves 
in the k plane for the interval of V under consideration is seen in Fig.4. 

2.5i 
Since the lines /+ for 7.4 < V< 7.95 cannot be used to 

evaluate the integral term from the right-hand side of (4.1), we 
compile a path of integration from sections of the contours U 
and L by connecting them as before by using the segments kqc,,. At 

a 
the point of intersection of k,, with L we have Re q(kvl;V)>O, 
hence, the contributions to I, due to integration over kql and L 

become comparable in magnitude. Understandably, elevated require- 
ments should be imposed on the method of approximate calculations 
to conserve their accuracy (as t grows these requirements are 

2.5i 
J.5 3.75 4.0 

naturally weakened). 
For 795<v<m each of the lines kvc,, not only connects U 

Fig.4 
and L but also possesses two points where Re ‘p (lc,,; V)= 0. The 
curves drawn through these points, denoted by the dark circles in 
Fig-l, from branches, one of which is in the upper half-plane and 

theotherin the lower. The horizontal lines going off to infinity, by which the contours U 
and L are terminated, are placed at such a distance from the real axis that the curves drawn 
through the dark circles would lie entirely in the domain D. 

In order to extract all the advantages of the saddle point method for evaluating the 
integral term from the right-hand side of 14.1) in the last 7.95< V< 00 and the moderate 
3g t,(10 ranges, integration should start along the contour U up to the intersection with 
the line k,, with given V, then continued to kq2 carrying the constant value Imcp(k; V), and 
terminate along the contour L from the point of its intersection with the line k,, to infinity. 
The inequality Re ‘p Q; V)< 0, which is valid at each point on the first and third sections 
of the path under consideration, ensures the smallness of the contributions from the correspond- 
ing integrals to 1,. Actually, only the contribution collected during integration along the 
segment kC2 with saddle point approximately at its middle is essential for calculating the 
quantity desired. 

5. Results of cahx~ations. As mentioned above, in laboratory experiments the 
growth of the vortex spot amplitude is replaced fairly rapidly by the extremely non-linear 
process of their development /lo/. Consequently, the times in the computations were selected 
to be moderate from the range 36 t< 10. Because of the differences in the magnitudes of 
the Reynolds numbers R used in the theory and achievable in tests, the quantitative comparison 
of any of these results turns out to be all but impossible: by the assumption on which the 
present analysis is based R-+oo, while comparatively low local values of X have been realized 
in a plate in a low-turbulence tube up to now. The graphs presented above enables us, however, 
to trace what qualitative regularities are inherent in wave packets during their formation 
and propagation to distances observable in experiments. Understandably, the illustrative 
material contains only part of thedataobtained, whose derivation with a computer was realized 
with an interval At = 1. 

The calculation process was organized as follows. For an approximate determination of 
the second term on the right-hand side of (4.11, the contour L is used as the pathofintegration 
if 0.i < Vc3.2. Composite paths of integration were used when 3.2< ~'613, where besides the 
segments of the contours U and L they included the lines k,, for 3.26 V<8 and the lines 

kaa for S<Vg13. The step AV=O.1 ensured the necessary accuracy of the calculations in 
all cases, although the integrals over km1 and L in the interval 7.4 Q V 4 7.9 were comparable 
in magnitude. 

The lengths of the contours U and L are fixed by their intersections with the lines k,, 

drawn through the curve kSB under the condition V= 13. The analysis was cut off here since 
the amplitude of the perturbations became quite small. Along U and L the functions eI (k) and 
x &: 00) were computed with a fairly shallow step in k for any given value of V. Thus, 600 
points were on U while the quantity reached 1500 on L because of the need to traverse the 
edges of the slit drawn through k,,. Both systems of lines km1 and prpz are aligned with a 
step AV=O.i and of the order of 150 points were utilized along each such line to compute 
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It is still necessary to select the vibrator parameters: we set a = 2, b = 1 in the 
extension of /2, Si'. As regards the frequency of its oscillations 08, we then consider three 
cases as typical: W@ = 2.@;5.0;7.3. The pressure distribution along the boundary layer for the 
first of these cases is shown in Fig.5 for the times t= 3; 6;10 (because of lack of space, 
we will comment only briefly on results referring to the other two cases). The critical 
frequency w* = 2,298 lies between the first two frequencies og = 2.0 and o,, = 5.0 of vibrator 
operation. The third value wtl = 7.3 corresponds to free selfexciting oscillations with a 
maximal increment in the amplitude growth along the longitudinal coordinate. For low times 
and all we the correction given in (2.7) for p' by the integral 1, should be taken into 
account. The method for evaluating it is described in IS/. 

The time t = 3 can be considered transitional for all regimes: at the end of such a 
small time interval after triggering the vibrator, the perturbations in its neig~o~~ho~ 
are, albeit considerably less, bUt Still comparable in order of magnitude withthefluctuations 
at the centre of the vortex spot. The invalid nature of the wave packet formation is 
manifested most clearly at the subcritical frequencies fFig.5a) while the process is more 
complete for post-critical frequencies. 

If wg = 2.0, then the vartex spat is separated from the source ta the time 1= 6 (Fig. 
5b), and takes a fully completed form at t- 40 (Fig.%). It is not subjected to the action 
of the source of oscillations that damp out quite rapidly with distance during its further 
motion. The perturbation field in the forward part of the spot and its centre is practically 
unchanged at all the subscritical frequencies, but the rear part changes slightly depending 
on the magnitude of wg_ From this viewpoint triggering of a harmonic oscillator with a sub- 
critical frequency is barely different from the impulsive connection being performed in 
experiments /lo/. 

As computations show, at post-critical frequencies the rear part of the vortex spot at 
the time t=6 is continuously referredtothe Tollmien-Schlichting wave being started at the 
vibrator with a wave number corresponding to a given w0 which is found from solving the 
dispersion relation (3.4). The fluctuations at the centre and forward part of the wave 

packets are similar in nature to that already discussed in Fig.Sb the fact that they have a 

large amplitude in order of magnitude. Hexe the perturbation field is determined principally 
by the internal properties of the boundary layer with selfinduced pressure, but, according 
to (1.61, the vertical component of the velocity vector on the membrane surface is proportional 

to wg at the initial time, whereupon the span of the oscillations changes as the frequency 

of the forcing force increases. 
The pattern just described for the vortex spots being formed at post-critical frequencies 

is conserved at the time t= $0. Further evolution of the wave packets causes the impression 

of their separation fromthesource,which is deceptive. The fact is that the amplitude of the 
fluctuations in the ~ollmien-Scb~~chting~a~e grows exponentially downstream of the vibrator. 
For large times the span of the oscillations in its n@i~hbaurhood is many times less than in 
the intermediate domain where the Tollm~en-Schlichting wave is connected with the rear part 
of the vortex spot. For t== 10 the domain between the source and the spot turns out to be 
perturbation-free although this estimate is smoothed out somewhat for the frequency WC - 1.3, 
that corresponds to free selfexciting oscillations with maximum growth of the amplitude 
along the longitudinal coordinate. We note that the e*cess pressure at the centre of the 
vortex spot does not reach the value that it would for continuous continuation of the Tollmein- 
Schlichting wave in the designated domain. 

For both subcritical and post-critical frequencies the vortex spot broadens as it 
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propagates downstream. According to /ll/, extrema Re al(k) hold at the points kl* = 0.523, 
k,* = 2.716, ks* = 3.616, k,* = 4.346, located on the real axis in the k plane, where positive 
maxima are realized in the second and fourth. It hence follows that the vortex spot under 
consideration or the wave packet consists of two subpackets joined into one. The maximum 
at the point k =: k,* is quite definite,the amplitude of its corresponding subpacket 
possesses the greatest growth increment in time. This is the centre of the vortex spot 
propagating at the group velocity V,* =--d Imq(k,*)ldk = 4.49, here the span of the oscilla- 
tions reaches the maximum value. The local maximum at k = k,* is hardly noticed compared 
with the values of Re o1 (k) at the adjacent points on the real axis, its corresponding wave 
subpacket whose group velocity is I’,*= -d Im w1 (k,*)ldk = 8.63, is not extracted by anything 
in the forward part of the spot. The boundary between both wave subpackets is determined 
by the local minimum Re rp (k,l,V)= Re (~(k,~, V), and the velocity of its displacement is V, =’ 
-d Im o1 (k,*)ldk = 7.64. As before, this extremum is denoted weakly, consequently, the boundary 
between the subpackets is not distinguishable in Fig.5 where the vortex spot appears as a 
single formation in the later stages G> 3). 

The wave number k = kz* determines the free selfexciting oscillations with the greatest 
amplitude growth in time. Their frequency ol* has the parameters Re as* = 1.24 and Im oa* = 
-8.16. The dependence of the excess pressure at the centre ofthevortex spot on the 
vibrator operating frequency 00 was noted above. For t>l and x>)l this dependence can 
be found by using the saddle point method, where the line k mI passing through the point of 
the curve k,, with V = V*, should be utilized by deforming the path of integration for 
calculating the second term on the right-hand side of (4.1). The latter obviously agrees 
with the point k = k,*. Hence, the magnitude of the perturbations at the centre of the spot 
is obtained proportional to the coefficient Q =@,,I aI2 (k,*)+wo21-1 that reaches a maximum for 
00 = 101 (&*)I = I mz* 1 = 8.25. The change in g as a0 increases is shown in Fig.6. 

In conclusion, we establish the nature of the perturbations in a long wave tongue 

extended in front. Its existence results from the fact that Re w1 (k)+ const = 1/z/2 as k+m 
along the real axis. The excess pressure in this domain is small, the Kelvin method of 
stationary phase, on the basis of the assumption V> 1, was used to compute it in /9/. The 
latter isin agreement with the calculation procedures described above which were cut off at 
the point of intersection of the contour L with the line k,, carrying the value v = 13. 
Repeating the reasoning in /9/, we have 

0.4 

a.1 

0 

p’=ReIa’n-‘/.oo[l-~exp(-txb/(at))+ (5.1) 

@ 

z!lY 

A exp(- im/(2t))] t”*xws exp(t/ r/Z) x 

exp (i (x*/t - 2 vzt + Jw4)) 

To conclusions of a qualitative aspect result from (5.1). 
Firstly, the structure of the perturbations in the domain 
under consideration depends on the initial stage of triggering 

4 8 "0 the vibrator being distinguished from that obtained during 
impulsive blowing of a jet into the boundary layer through 

Fig.6 a hole cut in the streamlined plate. Secondly, superposition 
of the waves results in origination of fine-scale oscillations governed by the ratio xvt 
in the exponent, even in the linear stage of the process of interaction between different 
modes. However, the amplitude of these oscillations is extremely small. They were not 
determined in the experiments /lo/.* (*See also: Gilev, V.M. and Kozlov, V.V., A method of 
creating two- and three-dimensional wave packets in the boundary layer. Preprint. Inst. 
Teoret. Prikl. Mekhaniki Sibirsk. Otdel. Akad. Nauk SSSR, No.2, Novosibirsk, 1980). 

The above analysis is based on the theory of free boundary layer interaction, which 
correctly describes the asymptotic form of the lower branch of the neutral stability curve. 
As has recently been shown /12, 13/, this theory applies to a study of the selfexciting 
oscillations in almost the whole domain enclosed between both branches of the neutral loop 
(the exception is the nearest neighbourhood of the upper branch). Taking account of the 
latter can be expressed just in a more accurate computation of the amplitude perturbations 
which are vanishingly small compared with the span of the fluctuations at the centre of the 
vortex spot. 

The ratio between the free selfexciting oscillations with maximum amplitude growth 
increment in space and the neutral frequency is approximately 3.17, which is in satisfactory 
agreement with the analogous quantity cited in /14/ as a result of numerical integration of 
the Orr-Sommerfeld equation for modWate values of the Reynolds numbers. 
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- REMOTE STATIONARY WAVE FIELD GENERATED BY LOCAL PERTURBING SOURCES IN 
A FLOW OF STRATIFIED FLUID* 

V.F. SANNIKOV 

A linear formulation is used to study the problem of stationary waves 
formed in a uniform flow of an inviscid incompressible vertically 
stratified fluid past a point source or a mass dipole. Formulas are 
derived representing the characteristics of the wave field in the form 
of the sum of single integrals. A method is developed for constructing 
complete asymptotic expansions of the integrals obtained for large 
distances from the wave generator, including uniform expansions near the 
leading fronts of the separate modes. Approximate solutions of the 
problem in question exist (/l-4/ et al.). The behaviour of the character 
istics of the wave field near the leading fronts of internal waves was 
studied in /5, 6/. In the case of a deep liquid the asymptotic form 
uniform in the neighbourhood of the leading fronts is expressed in terms 
of Fresnel integrals /5/, and in the case of a liquid of finite depth by 
Airy functions /6/. Examples of the exact solution of the problem are 
given in /7/. 
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